

Providing Data Utility on Cloud using Slicing
approach and Dynamic Auditing Protocol using
Third Party Auditor to maintain Integrity of Data

Madhuri R. Rokade1, Siddaling B.Natikar2

Department of Computer Engineering,

Vishwabharati Academy’s College of Engineering, Ahmednagar-414201

Abstract -The Cloud-computing releases the data owner’s burden
for storage management and maintenance by providing a
compare ably low-cost, scalable, location-independent platform.
However, the fact that clients no longer have physical
possession of data indicates that they are facing a potentially
formidable risk for missing or corrupted data. This new model
of data hosting service commence a new security challenges,
which requires an independent auditing service which audit the
data integrity of cloud. There are different existing auditing services
available in cloud which audit data integrity remotely in static
motion but these are not applicable whenever data is
dynamically updated in cloud. To avoid the security risks,
secure and efficient dynamic auditing protocol is introduced and to
ensure the integrity of file stored in cloud and To solve the data
privacy problem, we present a novel technique called slicing, which
partitions the data both horizontally and vertically. We show that
slicing preserves better data utility than generalization and can be
used for membership disclosure protection. Another important
advantage of slicing is that it can handle high-dimensional data.

1. INTRODUCTION

All CLOUD storage is an important service of cloud
computing, which allows data owners (owners) to move
data from their local computing systems to the cloud.
Owners would worry that the data could be lost in the
cloud. This is because data loss could happen in any
infrastructure, no matter what high degree of reliable
measures cloud service providers would take [4], [5], [6],
[7], [8]. Sometimes, cloud service providers might be
dishonest. They could discard the data that have not been
accessed or rarely accessed to save the storage space and
claim that the data are still correctly stored in the cloud.
Therefore, owners need to be convinced that the data are
correctly stored in the cloud. Recently, several remote
integrity checking protocols were proposed to allow the
auditor to check the data integrity on the remote server, the
authors proposed a dynamic auditing protocol that can
support the dynamic operations of the data on the cloud
servers, Again the authors extended their dynamic auditing
scheme to be privacy preserving and support the batch
auditing for multiple owners. [10], [11], [12], [13], [14],
[15], [16], [17], [18]. In [15], Zhu et al. proposed a
cooperative provable data possession scheme that can
support the batch auditing for multiple clouds and also
extend it to support the dynamic auditing in [26].However,
their scheme cannot support the batch auditing for multiple
owners. Furthermore, both Wang’s schemes and Zhu’s
schemes incur heavy computation cost of the auditor,
which makes the auditor a performance bottleneck.AS far
as privacy preserving is concerned, recent work has shown
that loses considerable amount of information, especially

for high-dimensional data. Bucketization, on the other
hand, does not prevent membership disclosure and does not
apply for data that do not have a clear separation between
quasi- identifying attributes and sensitive attributes.
In both generalization and bucketization, one first removes
identifiers from the data and then partitions tuples into
buckets. The two techniques differ in the next step.
Generalization transforms the QI-values in each bucket into
“less specific but semantically consistent” values so that
tuples in the same bucket cannot be distinguished by their
QI values.In bucketization, one separates the SAs from the
QIs by randomly permuting the SA values in each bucket.
The anonymized data consists of a set of buckets with
permuted sensitive attribute values.
In this paper, we present a novel technique called slicing,
which partitions the data both horizontally and vertically.
We show that slicing preserves better data utility than
generalization and can be used for membership disclosure
protection. Another important advantage of slicing is that
it can handle high-dimensional data. We show how slicing
can be used for attribute disclosure protection. We design
an auditing framework for cloud storage systems and
propose a privacy-preserving and efficient storage auditing
protocol. Our auditing protocol ensures the data
privacy.Our auditing protocol incurs less communication
cost between the auditor and the server. It also reduces the
computing loads of the auditor by moving it to the
server.We extend our auditing protocol to support the data
dynamic operations, which is efficient and provably secure
in the random oracle model.

2. SYSTEM ARCHITECTURE

Fig. 1. System model of the data storage auditing

We consider an auditing system for cloud storage as shown
in Fig.1, which involves data owners (owner), the cloud
server (server), and the third-party auditor (auditor). The
owners create the data and host their data in desired cloud.

Madhuri R. Rokade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 852-855

www.ijcsit.com 852

The cloud server stocks the owners’ data and provides the
data access to users. The auditor is a trustworthy third-party
that has expertise and capabilities to provide data storage
auditing service for both the servers and owners. we
introduce a novel data anonymization technique called
slicing to improve the current state of the art. Slicing
partitions the dataset both vertically and horizontally.
Vertical partitioning is done by grouping attributes into
columns based on the correlations among the attributes.
Each column contains a subset of attributes that are highly
correlated. Horizontal partitioning is done by grouping
tuples into buckets. Finally, within each bucket, values in
each column are randomly permutated (or sorted) to break
the linking between different columns.
Cloud Data Storage Model
The cloud storage model considering here is consists of
three main components as illustrated in Fig. 2.
1) Cloud User: the user, who can be an individual or an

organization originally storing their data in cloud and
accessing the data.

2) Cloud Service Provider (CSP): the CSP, who
manages cloud servers (CSs) and provides a paid
storage space on its infrastructure to users as a service.

3) Third Party Auditor (TPA) or Verifier: the TPA or
Verifier, who has expertise and capabilities that users
may not have and verifies the integrity of outsourced
data in cloud on behalf of users. Based on the audit
result, the TPA could release an audit report to user.

Fig. 2. Cloud Data Storage Model

3. SLICING ALGORITHM FOR BETTER DATA UTILITY:

Our algorithm consists of three phases: attribute
partitioning, column generalization, and tuple partitioning.
Attribute Partitioning algorithm
In this, we compute the correlations between pairs of
attributes and then cluster attributes based on their
correlations.
Measures of Correlation
Two widely-used measures of association are Pearson
correlation coefficient and mean-square contingency
coefficient. Pearson correlation coefficient is used for
measuring correlations between two continuous attributes
Although mean-square contingency coefficient is a chi-
square measure of correlation between two categorical
attributes. So, the mean-square contingency coefficient is
used because most of our attributes are categorical. Given
two attributes A 1 and A 2 with domain s v11, v12, ...,
v1d1 and v21, v22, ..., v2d2 , respectively. Their domain
sizes are thus d 1 an d2, respectively. The mean-square
contingency coefficient between A 1 and A 2 is defined as:

Here fi and fj are the fraction of occurrences of v1i and v2j
in the data,
correspondingly

 
 

..

..

12,1min

1
)2,1(

22

1

1

1

2

fjfi

fjfifij

dd
AA

d

j

d

i




 




 (1)
fij is the fraction of co-occurrences of v1i an d v2j in the
data. Therefore,fi and f j are the marginal totals of

fij :fi . =



2

1

d

j fij andf.j =



1

1

d

i fij.

It can be shown that   12,10 2  AA .
For continuous attribute, discretization can be applied to
partition the domain of a continuous attribute into intervals
and then treat the collection of interval values as a discrete
domain. Discretization has been frequently used for
decision tree summarization, classification, and frequent
items set mining. We use equal-width discretization, that
partitions an attribute domain into (some k) equal-sized
intervals.
Attribute Clustering
Having computed the correlations for each pair of
attributes, clustering to partition attributes into columns is
used. In our algorithm, each attribute is a point in the
clustering space. The distance between two attributes in the
clustering space is defined as d(A1,A2) = 1
−φ2(A1,A2),which is in between of 0 and 1. Two attributes
that are strongly-correlated will have a smaller distance
between the corresponding data points in our clustering
space. We choose the k-medoid method for the following
reasons. Starting with first,, many present clustering
algorithms (e.g., k-means) requires the calculation of the
“centroids”. But there is no notion of“centroids”in our
setting where each attribute forms a data point in the
clustering space. Second, k-medoid method is very robust
to the existence of outliers (i.e., data points that are very far
away from the rest of data).Third, the sequence in which
the data points are examined does not affect the clusters
computed from the k-medoid method. We use the well-
known k-medoid algorithm PAM (Partition Around
Medoids) [14]. PAM starts by an arbitrary selection of k
data points as the initial medoids. In each subsequent step,
PAM chooses one medoid point and one non-medoid point
and swaps them as long as the cost of clustering reduces.
Here, the clustering cost is calculated as the sum of the cost
of each cluster, which is in turn measured as the sum of the
distance from each data point in the cluster to the medoid
point of the cluster. The time complexity of PAM is O(k(n
−k)2). Thus, it is known that PAM suffers from high
computational complexity for large datasets. However, the
data points in our clustering space are attributes, rather than
tuples in the micro data. Therefore, PAM will not have
computational problems for clustering attributes.
 Special Attribute Partitioning
In the above procedure, all attributes (including both QIs
and SAs) are clustered into columns. The k-medoid method
ensures that the attributes are clustered into k columns but
does not have any guarantee on the size of the sensitive
column Cc. In some cases, we may pre-determine the

Madhuri R. Rokade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 852-855

www.ijcsit.com 853

number of attributes in the sensitive column to be α. The
parameter α determines the size of the sensitive column Cc,
i.e., |Cc| = α.
If α= 1, then |Cc| = 1, which means that Cc = {S}. And
When c = 2, slicing in this case becomes equivalent to
bucketization. If α>1, then |Cc| >1, the sensitive column
also contains some QI attributes. We adapt the above
algorithm to partition attributes into columns such that the
sensitive column Cc contains αat-tributes. We first
calculate correlations between the sensitive attribute S and
each QI attribute. Then, we rank the QI attributes by the
decreasing order of their correlations with S and select the
top α−1 QI attributes. Now, the sensitive column Cc
consists of S and the selected QI attributes. All other QI
attributes form the other c −1 columns using the attribute
clustering algorithm.

4. SECURE DYNAMIC AUDITING

Algorithm for Auditing Protocol
A storage auditing protocol contains of the following five
algorithms:
1.KeyGen(λ) =(sKh,sKt, pKt)This key generation
algorithm takes no input other than the implicit security
parameter. It outputs a secret hash key sKh and a pair of
secret-public tag key (sKt, pKt).
2. TagGen (M,skt,skh)=T. The tag generation algorithm
takes as inputs an encrypted file M, the secret tag key skt,
and the secret hash key skh. For each data block mi, it
computes a data tag ti based on skh and skt. It outputs a set
of data tags T={ti}iε[1,n]
3. Chall(Minfo)=C. The challenge algorithm take s as input
the abstract information of the data Minfo (e.g., file
identity, total number of blocks,etc.). It outputs a challenge
C.
4. Prove (M,T,C)=P. The prove algorithm takes as inputs
the file M, the tags T, and the challenge from the auditor C.
It outputs a proof P.
5. Verify(C,P,skh,pkt, Minfo)=0/1. The verification
algorithm takes as inputs P from the server, the secret hash
key skh, the public tag key pkt, and the abstract information
of the data Minfo. It outputs the auditing result as 0 or 1.

Fig. 3 Framework of privacy preserving Protocol

Suppose a file F has metadata components as F =(F1;...
;Fm). Each data component has its physical meanings and
can be updated dynamically by the data owners. The data
owner does not need to encrypt it for public data
components, but for private data component, the data
owner should to encrypt it with its corresponding key. Each
data component Fk is divided into nk data blocks denoted
as Fk =mk1;mk2 ;...;mknk. Due to the security purpose, the
data block size should be restricted by the security
parameter. Suppose the security level is set to be 160 bit
(20 Byte), the data block size should be of size 20 Byte. A
data component of 50-KByte will be divided into 2,500
data blocks and 2,500 data tags will be generated, which
acquires 50-Kbyte storage overhead. By using the data
fragment technique, next split each data block into sectors.
The sector size is controlled by the security parameter.
Then, generate one data tag for each data block that
consists of sectors, such that less data tags are generated. In
above, a 50-KByte data component only incurs50/s Kbyte
storage overhead. In actual storage systems, the data block
size can be various. That is, different data blocks could
have different number of sectors. For example, if a data
block mi will be frequently read, then si could be large, but
for those frequently updated data blocks, may be
comparatively small.

5. CONCLUSION
In this paper, we have studied the problem of data utility
and integrity of data storage in cloud computing and
proposed an efficient and secure dynamic auditing protocol.
The proposed method presents a new approach called
slicing to privacy-preserving data. Slicing overcomes the
limitations of generalization and bucketization and
preserves better utility while protecting against privacy
threats in cloud. we proposed an efficient and inherently
secure dynamic auditing protocol which audits the data
present in the cloud periodically and also whenever auditor
wants to check it.Also dynamic data changes are also
audited. . Furthermore, our auditing scheme incurs less
communication cost and less computation cost of the
auditor by moving the computing loads of auditing from
the auditor to the server, which greatly improves the
auditing performance and can be applied to large-scale
cloud storage systems.

REFERENCES
[1] Kan Yang, Student Member , IEEE , and Xiaohua Jia, Fellow ,

IEEE,"An Efficient and Secure Dynamic Auditing Protocol for Data
Storage in Cloud Computing",IEEE TRANSAC TIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9,
SEPTEMBER 2013.

[2] Tiancheng Li, Ninghui Li, Jian Zhang, Ian Molloy Purdue University,
West Lafayette, IN 47907, “Slicing: A New Approach to Privacy
Preserving Data Publishing,” IEEE 2012 Transactions on
Knowledge and Data Engineering, volume:24,Issue:3.

[3] T. Velte, A. Velte, and R. Elsenpeter, Cloud Computing: A Practical
Approach, first ed., ch. 7. McGraw-Hill, 2010.

[4] J. Li, M.N. Krohn, D. Mazie`res, and D. Shasha, “Secure Untrusted
Data Repository (SUNDR),” Proc. Sixth Conf. Symp. Operating
Systems Design Implementation, pp. 121-136, 2004.

[5] G.R. Goodson, J.J. Wylie, G.R. Ganger, and M.K. Reiter, “Efficient
Byzantine-Tolerant Erasure-Coded Storage,” Pro c. Int ’l Conf.
Dependable Systems and Networks, pp. 135-144, 2004.

[6] V. Kher and Y. Kim, “Securing Distributed Storage: Challenges,
Techniques, and Systems,” Proc. ACM Workshop Storage Security

Madhuri R. Rokade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 852-855

www.ijcsit.com 854

and Survivability (StorageSS), V. Atluri, P. Samarati, W. Yurcik, L.
Brumbaugh, and Y. Zhou, eds., pp. 9-25, 2005.

[7] L.N. Bairavasundaram, G.R. Goodson, S. Pasupathy, and J. Schindler,
“An Analysis of Latent Sector Errors in Disk Drives,” Proc. ACM
SIGMETRICS Int’l Conf. Measurement and Modeling of Computer
Systems, L. Golubchik, M.H. Ammar, and M. Harchol- Balter, eds.,
pp. 289-300, 2007.

[8] B. Schroeder and G.A. Gibson, “Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You?” Proc.
USENIX Conf. File and Storage Technologies, pp. 1-16, 2007.

[9] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard, “A
Cooperative Internet Backup Scheme,” Proc. USENIX Ann.
Technical Conf., pp. 29-41, 2003.

 [10] G. Ateniese, R.C. Burns, R. Curtmola, J. Herring, L. Kissner, Z.N.J.
Peterson, and D.X. Song, “Provable Data Possession at Untrusted
Stores,” Proc. ACM Conf. Computer and Comm. Security, P. Ning,
S.D.C. di Vimercati, and P.F. Syverson, eds., pp. 598-609, 2007.

[11] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
Proc. 14th Int’l Conf. Theory and Application of Cryptology and
Info rma tion Se curit y: Adva nces in Cr yptol ogy , J. Pieprzyk, ed.,
pp. 90-107, 2008.

[12] C.C. Erway, A. Ku¨ pc¸u¨ , C. Papamanthou, and R. Tamassia,
“Dynamic Provable Data Possession,” Proc. ACM Conf. Computer
and Comm. Security, E. Al-Shaer, S. Jha, and A.D. Keromytis, eds.,
pp. 213-222, 2009.

[13] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE Trans. Parallel Distributed Systems, vol. 22, no.
5, pp. 847-859, May 2011.

[14] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public
Auditing for Data Storage Security in Cloud Computing,” Proc.
IEEE INFOCOM, pp. 525-533, 2010.

[15] Y. Zhu, H. Hu, G. Ahn, and M. Yu, “Cooperative Provable Data
Possession for Integrity Verification in Multi-Cloud Storage,” IEEE
Trans. Parallel and Distributed Systems, vol. 23, no. 12, pp. 2231-
2244, Dec. 2012.

[16] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S.S. Yau, “Dynamic
Audit Services for Integrity Verification of Outsourced Storages in
Clouds,” Proc. ACM Symp. Applied Computing, W.C. Chu, W.E.
Wong, M.J. Palakal, and C.-C. Hung, eds., pp. 1550-1557, 2011.

[17] K. Zeng, “Publicly Verifiable Remote Data Integrity,” Proc. 10th Int’l
Conf. Information and Comm. Security, L. Chen, M.D. Ryan, and G.
Wang, eds., pp. 419-434, 2008.

[18] G. Ateniese, S. Kamara, and J. Katz, “Proofs of Storage from
Homomorphic Identification Protocols,” Proc. Int’l Conf. Theory
and Application of Cryptology and Information Security: Advances
in Cryptology, M. Matsui, ed., pp. 319-333, 2009.

Madhuri R. Rokade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 852-855

www.ijcsit.com 855

