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Abstract -The Cloud-computing releases the data owner’s   burden 
for   storage   management   and   maintenance   by providing   a   
compare ably   low-cost,   scalable,   location-independent   platform.   
However,   the   fact   that   clients no longer   have   physical   
possession   of   data   indicates   that   they   are   facing   a potentially   
formidable   risk   for missing or   corrupted   data.  This  new  model  
of  data  hosting  service  commence  a  new  security  challenges,  
which  requires  an  independent  auditing  service which audit the 
data integrity of cloud. There are different  existing  auditing  services  
available  in  cloud  which  audit  data  integrity  remotely  in  static  
motion  but  these  are  not  applicable  whenever  data  is  
dynamically  updated  in  cloud.   To   avoid   the   security   risks,  
secure  and  efficient  dynamic  auditing  protocol is introduced and to   
ensure   the   integrity of  file  stored  in  cloud  and  To solve the data 
privacy problem, we present a novel technique called  slicing, which  
partitions the data both horizontally and  vertically. We show that 
slicing preserves better data utility than generalization and can be 
used for membership disclosure protection. Another important 
advantage of slicing is that it can handle high-dimensional data. 

 
1. INTRODUCTION 

All CLOUD storage is an important service of cloud 
computing, which allows data owners (owners) to move 
data from their local computing systems to the cloud. 
Owners would worry that the data could be lost in the 
cloud. This is because data loss could happen in any 
infrastructure, no matter what high degree of reliable 
measures cloud service providers would take [4], [5], [6], 
[7], [8]. Sometimes, cloud service providers might be 
dishonest. They could discard the data that have not been 
accessed or rarely accessed to save the storage space and 
claim that the data are still correctly stored in the cloud. 
Therefore, owners need to be convinced that the data are 
correctly stored in the cloud. Recently, several remote 
integrity checking protocols were proposed to allow the 
auditor to check the data integrity on the remote server, the 
authors proposed a dynamic auditing protocol that can 
support the dynamic operations of the data on the cloud 
servers, Again the authors extended their dynamic auditing 
scheme to be privacy preserving and support the batch 
auditing for multiple owners.  [10], [11], [12], [13], [14], 
[15], [16], [17], [18]. In [15], Zhu et al. proposed a 
cooperative provable data possession scheme that can 
support the batch auditing for multiple clouds and also 
extend it to support the dynamic auditing in [26].However, 
their scheme cannot support the batch auditing for multiple 
owners. Furthermore, both Wang’s schemes and Zhu’s 
schemes incur heavy computation cost of the auditor, 
which makes the auditor a performance bottleneck.AS far 
as privacy preserving is concerned, recent work has shown 
that loses considerable amount of information, especially 

for high-dimensional data. Bucketization, on the other 
hand, does not prevent membership disclosure and does not 
apply for data that do not have a clear separation between 
quasi- identifying attributes and sensitive attributes. 
In both generalization and bucketization, one first removes 
identifiers from the data and then partitions tuples into 
buckets. The two techniques differ in the next step. 
Generalization transforms the QI-values in each bucket into 
“less specific but semantically consistent” values so that 
tuples in the same bucket cannot be distinguished by their 
QI values.In bucketization, one separates the SAs from the 
QIs by randomly permuting the SA values in each  bucket. 
The anonymized data consists of a set of buckets with 
permuted sensitive attribute values. 
In this paper, we present a novel technique called slicing, 
which partitions the data both horizontally and vertically. 
We show that slicing preserves  better data utility than 
generalization and  can  be used  for membership disclosure  
protection. Another important advantage  of slicing  is that 
it can handle  high-dimensional data. We show how slicing 
can be used for attribute disclosure protection. We design 
an auditing framework for cloud storage systems and 
propose a privacy-preserving and efficient storage auditing 
protocol. Our auditing protocol ensures the data 
privacy.Our auditing protocol incurs less communication 
cost between the auditor and the server. It also reduces the 
computing loads of the auditor by moving it to the 
server.We extend our auditing protocol to support the data 
dynamic operations, which is efficient and provably secure 
in the random oracle model.  
 

2. SYSTEM ARCHITECTURE 

 
Fig. 1. System model of the data storage auditing 

 
We consider an auditing system for cloud storage as shown 
in Fig.1, which involves data owners (owner), the cloud 
server (server), and the third-party auditor (auditor). The 
owners create the data and host their data in desired cloud. 
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The cloud server stocks the owners’ data and provides the 
data access to users. The auditor is a trustworthy third-party 
that has expertise and capabilities to provide data storage 
auditing service for both the servers and owners. we 
introduce  a novel  data anonymization technique called  
slicing  to improve  the current state of the art. Slicing 
partitions the dataset both vertically and horizontally. 
Vertical partitioning is done by grouping attributes into 
columns based on the correlations among the attributes. 
Each column contains a subset of attributes that are highly 
correlated.  Horizontal partitioning is done by grouping 
tuples into buckets. Finally, within each bucket, values in 
each column are randomly permutated (or sorted) to break 
the linking between different columns. 
Cloud Data Storage Model  
The cloud storage model considering here is consists of 
three main components as illustrated in Fig. 2.   
1)  Cloud  User:  the  user, who can be an individual or  an 

organization originally storing their data in cloud and  
accessing the data.  

2)  Cloud Service  Provider  (CSP):  the CSP, who  
manages cloud  servers (CSs) and provides  a  paid 
storage space on its infrastructure to users as a service.  

3)  Third Party Auditor (TPA) or Verifier:  the TPA or 
Verifier, who has expertise and capabilities that users  
may not have and verifies  the integrity of  outsourced 
data in cloud  on behalf of users.  Based on the audit 
result, the TPA could release an audit report to user.   

 
Fig. 2. Cloud Data Storage Model 

 
3. SLICING ALGORITHM FOR BETTER DATA UTILITY: 

Our algorithm consists of  three phases: attribute 
partitioning, column generalization, and tuple partitioning.  
Attribute Partitioning algorithm  
In this, we compute the correlations between pairs of 
attributes and then cluster attributes based on their 
correlations. 
Measures of Correlation 
Two widely-used measures of association are Pearson 
correlation coefficient and mean-square contingency 
coefficient. Pearson correlation coefficient is used for 
measuring correlations between two continuous attributes 
Although mean-square contingency coefficient is a chi-
square measure of correlation between two categorical 
attributes. So, the mean-square contingency coefficient is 
used because most of our attributes are categorical. Given 
two attributes A 1 and A 2 with domain s v11, v12, ..., 
v1d1 and v21, v22, ..., v2d2 , respectively. Their domain 
sizes are thus d 1 an d2, respectively. The mean-square 
contingency coefficient between A 1 and A 2 is defined as: 

Here fi and fj are the fraction of occurrences of v1i and v2j 
in the data, 
correspondingly
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For continuous attribute, discretization can be applied to 
partition the domain of a continuous attribute into intervals 
and then treat the collection of interval values as a discrete 
domain. Discretization has been frequently used for 
decision tree summarization, classification, and frequent 
items set mining. We use equal-width discretization, that 
partitions an attribute domain into (some k) equal-sized 
intervals. 
Attribute Clustering 
Having computed the correlations for each pair of 
attributes, clustering to partition attributes into columns is 
used. In our algorithm, each attribute is a point in the 
clustering space. The distance between two attributes in the 
clustering space is defined as d(A1,A2) = 1 
−φ2(A1,A2),which is in between of 0 and 1. Two attributes 
that are strongly-correlated will have a smaller distance 
between the corresponding data points in our clustering 
space. We choose the k-medoid method for the following 
reasons. Starting with first,, many present clustering 
algorithms (e.g., k-means) requires the calculation of the 
“centroids”. But there is no notion of“centroids”in our 
setting where each attribute forms a data point in the 
clustering space. Second, k-medoid method is very robust 
to the existence of outliers (i.e., data points that are very far 
away from the rest of data).Third, the sequence in which 
the data points are examined does not affect the clusters 
computed from the k-medoid method. We use the well-
known k-medoid algorithm PAM (Partition Around 
Medoids) [14]. PAM starts by an arbitrary selection of k 
data points as the initial medoids. In each subsequent step, 
PAM chooses one medoid point and one non-medoid point 
and swaps them as long as the cost of clustering reduces. 
Here, the clustering cost is calculated as the sum of the cost 
of each cluster, which is in turn measured as the sum of the 
distance from each data point in the cluster to the medoid 
point of the cluster. The time complexity of PAM is O(k(n 
−k)2). Thus, it is known that PAM suffers from high 
computational complexity for large datasets. However, the 
data points in our clustering space are attributes, rather than 
tuples in the micro data. Therefore, PAM will not have 
computational problems for clustering attributes. 
 Special Attribute Partitioning 
In the above procedure, all attributes (including both QIs 
and SAs) are clustered into columns. The k-medoid method 
ensures that the attributes are clustered into k columns but 
does not have any guarantee on the size of the sensitive 
column Cc. In some cases, we may pre-determine the 
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number of attributes in the sensitive column to be α. The 
parameter α determines the size of the sensitive column Cc, 
i.e., |Cc| = α. 
If α= 1, then |Cc| = 1, which means that Cc = {S}. And 
When c = 2, slicing in this case becomes equivalent to 
bucketization. If α>1, then |Cc| >1, the sensitive column 
also contains some QI attributes. We adapt the above 
algorithm to partition attributes into columns such that the 
sensitive column Cc contains αat-tributes. We first 
calculate correlations between the sensitive attribute S and 
each QI attribute. Then, we rank the QI attributes by the 
decreasing order of their correlations with S and select the 
top α−1 QI attributes. Now, the sensitive column Cc 
consists of S and the selected QI attributes. All other QI 
attributes form the other c −1 columns using the attribute 
clustering algorithm. 

 
4. SECURE DYNAMIC AUDITING 

Algorithm for Auditing Protocol 
A storage auditing protocol contains of the following five 
algorithms: 
1.KeyGen(λ) =(sKh,sKt, pKt)This key generation 
algorithm takes no input other than the implicit security 
parameter. It outputs a secret hash key sKh and a pair of 
secret-public tag key (sKt, pKt). 
2. TagGen (M,skt,skh)=T. The tag generation algorithm 
takes as inputs an encrypted file M, the secret tag key skt, 
and the secret hash key skh. For each data block mi, it 
computes a data tag ti based on skh and skt. It outputs a set 
of data tags T={ti}iε[1,n] 
3. Chall(Minfo)=C. The challenge algorithm take s as input 
the abstract information of the data Minfo (e.g., file 
identity, total number of blocks,etc.). It outputs a challenge 
C. 
4. Prove (M,T,C)=P. The prove algorithm takes as inputs 
the file M, the tags T, and the challenge from the auditor C. 
It outputs a proof P. 
5. Verify(C,P,skh,pkt, Minfo)=0/1. The verification 
algorithm takes as inputs P from the server, the secret hash 
key skh, the public tag key pkt, and the abstract information 
of the data Minfo. It outputs the auditing result as 0 or 1. 
 

 
 

Fig. 3 Framework of privacy preserving Protocol 
 

Suppose a file F has metadata components as F =(F1;... 
;Fm). Each data component has its physical meanings and 
can be updated dynamically by the data owners. The data 
owner does not need to encrypt it for public data 
components, but for private data component, the data 
owner should to encrypt it with its corresponding key. Each 
data component Fk is divided into nk data blocks denoted 
as Fk =mk1;mk2 ;...;mknk. Due to the security purpose, the 
data block size should be restricted by the security 
parameter. Suppose the security level is set to be 160 bit 
(20 Byte), the data block size should be of size 20 Byte. A 
data component of 50-KByte will be divided into 2,500 
data blocks and 2,500 data tags will be generated, which 
acquires 50-Kbyte storage overhead. By using the data 
fragment technique, next split each data block into sectors. 
The sector size is controlled by the security parameter. 
Then, generate one data tag for each data block that 
consists of sectors, such that less data tags are generated. In 
above, a 50-KByte data component only incurs50/s Kbyte 
storage overhead. In actual storage systems, the data block 
size can be various. That is, different data blocks could 
have different number of sectors. For example, if a data 
block mi will be frequently read, then si could be large, but 
for those frequently updated data blocks, may be 
comparatively small. 
 

5. CONCLUSION 
In this paper, we have studied the problem of data utility 
and integrity of data storage in cloud computing and 
proposed an efficient and secure dynamic auditing protocol. 
The proposed method presents a new approach called   
slicing to privacy-preserving data. Slicing overcomes the 
limitations of generalization and bucketization and 
preserves better utility while protecting against privacy 
threats in cloud. we proposed an efficient and inherently 
secure dynamic auditing protocol which audits the data 
present in the cloud periodically and also whenever auditor 
wants to check it.Also dynamic data changes are also 
audited. . Furthermore, our auditing scheme incurs less 
communication cost and less computation cost of the 
auditor by moving the computing loads of auditing from 
the auditor to the server, which greatly improves the 
auditing performance and can be applied to large-scale 
cloud storage systems. 
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